52 research outputs found

    Surface MIMO: Using Conductive Surfaces For MIMO Between Small Devices

    Full text link
    As connected devices continue to decrease in size, we explore the idea of leveraging everyday surfaces such as tabletops and walls to augment the wireless capabilities of devices. Specifically, we introduce Surface MIMO, a technique that enables MIMO communication between small devices via surfaces coated with conductive paint or covered with conductive cloth. These surfaces act as an additional spatial path that enables MIMO capabilities without increasing the physical size of the devices themselves. We provide an extensive characterization of these surfaces that reveal their effect on the propagation of EM waves. Our evaluation shows that we can enable additional spatial streams using the conductive surface and achieve average throughput gains of 2.6-3x for small devices. Finally, we also leverage the wideband characteristics of these conductive surfaces to demonstrate the first Gbps surface communication system that can directly transfer bits through the surface at up to 1.3 Gbps.Comment: MobiCom '1

    Examining the effects of Lighting Effects on Peripheral Devices for Visual User Notifications

    Get PDF
    The ubiquitous and pervasive use of lighting effects embedded into peripheral hardware has gained popularity through it’s use in Triple-A video game titles such as Call of Duty and the availability of software development kits (SDK) from leading manufacturers. A preliminary NASA TLX experiment was performed to examine the effect that notifications displayed on a peripheral device has, in comparison to traditional dialog notifications. This research will prove useful to create notification design guidance for these devices

    A Novel Biochemical Route for Fuels and Chemicals Production from Cellulosic Biomass

    Get PDF
    The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase production is consolidated into one single step, referred to as consolidated aerobic processing, and sugar aldonates are produced as the reactive intermediates for biofuels production by fermentation. In this study, we demonstrate the viability of consolidation of the enzymatic hydrolysis and cellulase production steps in the new route using Neurospora crassa as the model microorganism and the conversion of cellulose to ethanol as the model system. We intended to prove the two hypotheses: 1) cellulose can be directed to produce cellobionate by reducing β-glucosidase production and by enhancing cellobiose dehydrogenase production; and 2) both of the two hydrolysis products of cellobionate—glucose and gluconate—can be used as carbon sources for ethanol and other chemical production. Our results showed that knocking out multiple copies of β-glucosidase genes led to cellobionate production from cellulose, without jeopardizing the cellulose hydrolysis rate. Simulating cellobiose dehydrogenase over-expression by addition of exogenous cellobiose dehydrogenase led to more cellobionate production. Both of the two hydrolysis products of cellobionate: glucose and gluconate can be used by Escherichia coli KO 11 for efficient ethanol production. They were utilized simultaneously in glucose and gluconate co-fermentation. Gluconate was used even faster than glucose. The results support the viability of the two hypotheses that lay the foundation for the proposed new route

    Octopus-inspired deception and signaling systems from an exceptionally-stable acene variant

    No full text
    Abstract Multifunctional platforms that can dynamically modulate their color and appearance have attracted attention for applications as varied as displays, signaling, camouflage, anti-counterfeiting, sensing, biomedical imaging, energy conservation, and robotics. Within this context, the development of camouflage systems with tunable spectroscopic and fluorescent properties that span the ultraviolet, visible, and near-infrared spectral regions has remained exceedingly challenging because of frequently competing materials and device design requirements. Herein, we draw inspiration from the unique blue rings of the Hapalochlaena lunulata octopus for the development of deception and signaling systems that resolve these critical challenges. As the active material, our actuator-type systems incorporate a readily-prepared and easily-processable nonacene-like molecule with an ambient-atmosphere stability that exceeds the state-of-the-art for comparable acenes by orders of magnitude. Devices from this active material feature a powerful and unique combination of advantages, including straightforward benchtop fabrication, competitive baseline performance metrics, robustness during cycling with the capacity for autonomous self-repair, and multiple dynamic multispectral operating modes. When considered together, the described exciting discoveries point to new scientific and technological opportunities in the areas of functional organic materials, reconfigurable soft actuators, and adaptive photonic systems

    Immobilization of alpha-amylase produced by Bacillus circulans GRS 313

    No full text
    A maltooligosaccharide-forming amylase from B circulans GRS 313 was immobilized by entrapment in calcium alginate beads. The immobilized activity was affected by the size of the bead and bead size of 2mm was found to be most effective for hydrolysis. Kinetics constants, Km and Vmax were estimated and were found to be affected by the bead size. The catalytic activity of the enzyme was studied in presence of various starchy residues and metal ions. HgCl2, CuSO4 and FeCl3 caused inhibition of the enzyme. The reaction conditions, pH and temperature, was optimized using response surface methodology. At the optimum pH and temperature of 4.9 and 57ºC, the apparent activity was 25.6U/g of beads, resulting in almost 2-fold increase in activity. The immobilized enzyme showed a high operational stability by retaining almost 85% of the initial activity after seventh use.<br>Um maltooligossacarideo obtido a partir de amilase produzida por B. circulans GRS 313 foi imobilizada em alginato de sódio. A atividade enzimática foi afetada pelo tamanho da partícula. Partículas com 2mm foram as mais efetivas na hidrólise. Constantes cinética Km e Vmax foram estimadas e afetadas pelo tamanho das partículas. A atividade catalítica da enzima foi estuda na presença de diferentes tipos de amido e íons metálicos. HgCl2, CuSO4 e FeCl3 provocaram inibição na enzima. As condições de reação (temperatura e pH) foram otimizadas utilizando a metodologia da superfície de resposta. Em pH ótimo de 4,9 e temperatura de 57 ºC, a atividade aparente foi de 25.6 U/g de partículas, resultando num acréscimo de mais de 2 vezes na atividade da enzima. A imobilização da enzima mostrou uma alta estabilidade operacional pela retenção de 85% de sua atividade inicial após sete ciclos de utilização
    corecore